Telegram Group & Telegram Channel
Какие методы оптимизации в машинном обучении вы знаете?

Оптимизация — это, в сущности, процесс настройки алгоритма таким образом, чтобы минимизировать или максимизировать определённую функцию потерь.

🟣 Градиентный спуск. Самый простой и известный метод. Параметры модели обновляются с помощью градиента, чтобы прийти к точке минимума. Градиент — это вектор, направление которого совпадает с направлением наискорейшего локального возрастания функции. Соответственно, нас интересует антиградиент, то есть направление наискорейшего локального убывания.

🟣 Стохастический градиентный спуск. Вариация метода выше. В этом случае мы подменяем вычисление градиента по всей выборке вычислением по случайной подвыборке. Это ускоряет процесс обучения.

🟣 Градиентный спуск с моментом. Ещё одна вариация. С математической точки зрения, мы добавляем к градиентному шагу ещё одно слагаемое, которое содержит информацию о предыдущих шагах.

🟣 Adagrad. Адаптация стохастического градиентного спуска. Алгоритм адаптирует размер шага для каждого параметра индивидуально, что позволяет более эффективно находить оптимум.

🟣 RMSprop. Метод, разработанный для решения проблемы быстрого уменьшения скорости обучения в Adagrad.

🟣 Adam (ADAptive Momentum). Объединяет в себе идеи градиентного спуска с моментом и RMSprop.



tg-me.com/ds_interview_lib/101
Create:
Last Update:

Какие методы оптимизации в машинном обучении вы знаете?

Оптимизация — это, в сущности, процесс настройки алгоритма таким образом, чтобы минимизировать или максимизировать определённую функцию потерь.

🟣 Градиентный спуск. Самый простой и известный метод. Параметры модели обновляются с помощью градиента, чтобы прийти к точке минимума. Градиент — это вектор, направление которого совпадает с направлением наискорейшего локального возрастания функции. Соответственно, нас интересует антиградиент, то есть направление наискорейшего локального убывания.

🟣 Стохастический градиентный спуск. Вариация метода выше. В этом случае мы подменяем вычисление градиента по всей выборке вычислением по случайной подвыборке. Это ускоряет процесс обучения.

🟣 Градиентный спуск с моментом. Ещё одна вариация. С математической точки зрения, мы добавляем к градиентному шагу ещё одно слагаемое, которое содержит информацию о предыдущих шагах.

🟣 Adagrad. Адаптация стохастического градиентного спуска. Алгоритм адаптирует размер шага для каждого параметра индивидуально, что позволяет более эффективно находить оптимум.

🟣 RMSprop. Метод, разработанный для решения проблемы быстрого уменьшения скорости обучения в Adagrad.

🟣 Adam (ADAptive Momentum). Объединяет в себе идеи градиентного спуска с моментом и RMSprop.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/101

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram announces Anonymous Admins

The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Библиотека собеса по Data Science | вопросы с собеседований from in


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA